Evaluation of the 57mFe Quadrupole Moment from

Hartree-Fock Calculations*

F. Hagelberg and T. P. Dasa

Department of Physics, Atmospheric Sciences and General Science, Jackson State University, Jackson, MS 39217, U.S.A.

^a Department of Physics, State University of New York at Albany, Albany, NY 12222, U.S.A.

Z. Naturforsch. **53 a,** 358–361 (1998); received March 24, 1998

Two theoretical evaluations of 57m Fe quadrupole moment (Q), based on different formalisms, namely the Hartree-Fock theory and the Linearized Augmented Plane Wave method have yielded results differing by a factor of two. In both cases, Q was obtained from experimental quadrupole interaction frequencies through investigation of the Electric Field Gradients at the nuclear site of the 57m Fe probe. It is the purpose of the present work to reexamine the earlier Hartree-Fock approach. In particular, the earlier model is extended through a more realistic description of the environment of 57m Fe in the respective experiments, as well as through inclusion of electron correlation effects. Reprint requests to Prof. F. Hagelberg; Fax: 601-973-3630, E-mail: hagx@tiger.jsums.edu